

Secrets leakage detection &
prevention

Meethack (Torino, 2024-06-18)

Agenda

● Houston, we have a problem
● Detection is important…
● … but Prevention is better!
● Paved roads, the cultural

change
● Let’s wrap it up!
● Questions?

https://en.wikipedia.org/wiki/Smokey_Bear

Houston, we have a problem

Leaked secrets could lead to data breaches

“Cost of a Data Breach Report 2023”, Ponemon Institute

● The usage of stolen or compromised
credentials is the second common initial
vector, by frequency, for a data breach.
– With a frequency of 15% and a cost of 4.62M

USD.
● The malicious insider is the highest

initial vector, in terms of cost, for a data
breach.
– With a frequency of 6% and a cost of 4.90M

USD.
● “Assume breach”

They are called secrets for a reason

Secrets encompass
confidential information,

such as: passwords,
encryption keys, API

tokens, digital
certificates, etc.

Secrets are pivotal for
authenticating and

authorizing access to
secured resources and

systems.

Detection is important...

Detection lets you know when there is a problem
● Secrets detection is part of Static Application Security Testing (SAST).
● There are several tools, commercial or not, able to perform this kind of

checks:
– gitleaks - https://github.com/gitleaks/gitleaks
– trufflehog - https://github.com/trufflesecurity/trufflehog
– ggshield - https://github.com/GitGuardian/ggshield
– detect-secrets - https://github.com/Yelp/detect-secrets
– git-secrets - https://github.com/awslabs/git-secrets
– Semgrep Secrets - https://semgrep.dev/products/semgrep-secrets
– ...

● In this talk Gitleaks will be used, but the concepts are the same!

Detection has its own limitations

Sometimes detection is easier…

aws_secret="AKIAIMNOJVGFDXXXE4OA"

Sometimes detection is harder…

password_field_label="password-fld-lbl-1"

my_password="$up3rP4ssw0rd!"

Centralize detection in CI/CD to spot problems

● It’s unrealistic to scale
Application Security
activities without
leveraging on automation.

● Look for plugins for your
CI/CD ecosystem.
– Gitleaks has an official

GitHub Action.

https://github.com/gitleaks/gitleaks-action

Example of a GitHub workflow
name: gitleaks

on: [pull_request, push, workflow_dispatch]

permissions:

 # Allow access to commit list

 contents: read

 # Allow access to adding comments

 discussions: write

 pull-requests: write

jobs:

 scan:

 name: gitleaks

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v3

 with:

 fetch-depth: 0

 - uses: gitleaks/gitleaks-action@v2

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

https://github.com/gitleaks/gitleaks-action

Customize the solution based on your needs

● ~166 standard rules provided by
Gitleaks.

● Rules are based on regexes.
● You can create your custom rules

via TOML files and use them
– with the -c param of the

executable
– or the GITLEAKS_CONFIG

environment variable of the GHA.

Your custom Gitleaks configuration file.

title = "Your custom Gitleaks rules"

Extending default rules.

[extend]

useDefault = true

[[rules]]

Put your custom rules here.

https://github.com/gitleaks/gitleaks/blob/master/config/gitleaks.toml

Example of a Gitleaks rule

[[rules]]

id = "aws-access-token"

description = "Identified a pattern that may indicate AWS
credentials, risking unauthorized cloud resource access and data
breaches on AWS platforms."

regex = '''(?:A3T[A-Z0-9]|AKIA|ASIA|ABIA|ACCA)[A-Z0-9]{16}'''

keywords = [

 "akia","asia","abia","acca",

]

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#configuration

Keywords are used for pre-regex check
filtering.

Rules that contain keywords will perform
a quick string compare check to make
sure the keyword(s) are in the content

being scanned.

https://github.com/gitleaks/gitleaks/blob/79cac73f7267f4a48f4bc73db11e105a6098a836/config/gitleaks.toml#L124

… but Prevention is better!

Pre-commit hooks can prevent leaks

● A leaked secret – even if
detected – is still a leaked
secret.

● Pre-commit hooks can be
configured in your
workstation to perform scan
locally, blocking dangerous
commits and preventing leaks
from happening.

● Install Gitleaks (it requires Go).
● Create a folder to store global hooks, for

example:
– /home/<your_user>/gitconfig/hooks

● In that folder, create a file named exactly:
– pre-commit

● In that file, write the script to perform the check
(Python example in the next slide).

● Make the file executable.
● Edit global git config file, usually .gitconfig

in your home, to add the following lines.
[core]

 hooksPath = /home/<your_user>/gitconfig/hooks

[hooks]

 gitleaks = true

Example of pre-commit hook in Python
def gitleaksEnabled():

 out = subprocess.getoutput('git config --bool hooks.gitleaks')

 if out == "false":

 return False

 return True

if gitleaksEnabled():

 exitCode = os.WEXITSTATUS(os.system('gitleaks protect -v --staged --redact'))

 if exitCode == 1:

 print('Warning: gitleaks has detected sensitive information in your changes.')

 sys.exit(1)

else:

 print('gitleaks precommit disabled (enable with `git config hooks.gitleaks true`)')

https://github.com/gitleaks/gitleaks/blob/master/scripts/pre-commit.py

To check for changes in commits
that have been git added.

Redact secrets from
logs and stdout.

Used to scan uncommitted
changes in a git repo. This
command should be used
on developer machines.

Commit blocked on the development workstation

Paved roads, the cultural change

Make the wrong road also the hard one
● Paved roads aka secure defaults, golden paths, ...
● Give to software engineers solutions, not just problems to solve.
● Invest in the adoption of secrets management tools:

– HashiCorp Vault
– Google Cloud Secret Manager
– AWS Secrets Manager
– Azure Key Vault
– ...

● Software engineers will have a concrete solution to their problem
and you will effectively manage the secrets ecosystem.

Let’s wrap it up!

A problem, but complementary ways to solve it
● Secrets leaked in source code can be used by

malicious actors to compromise other platforms in
your ecosystem.

● Automatic tools exist to perform checks.
– Centralize the scan to scale.
– Customize the solution with your own rules.
– Prevent at development workstations.

● Invest in the culture and provide solutions via
usable secure defaults.

Thank you!
Questions?

https://m3ssap0.github.io/assets/resources/meethack/Secrets%20leakage%20detection%20&%20prevention.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

